

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 175 (2003) 348–352

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Refinement of α -CsB₉O₁₄ crystal structure

N. Penin,^a M. Touboul, $a,*$ and G. Nowogrocki^b

^a Laboratoire de Réactivité et de Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 6007, 33, rue Saint-Leu, 80039 Amiens Cedex, France

^bLaboratoire de Cristallochimie et Physicochimie du Solide, ENSC Lille, CNRS UMR 8012, BP108, 59652 Villeneuve d'Ascq Cedex, France

Received 2 April 2003; received in revised form 28 May 2003; accepted 30 May 2003

Abstract

The structure of α -CsB₉O₁₄ was re-examined because the first determination corresponded to a poor reliability factor (12.9%). Single crystals were obtained by heating, melting and slow cooling a stoichiometric mixture (1:4) of β -Cs[B₅O₆(OH)₄] \cdot 2H₂O and H_3BO_3 . This compound crystallizes in the non-centrosymmetric orthorhombic space group $P222₁$ (and not $P4₁22$) with the following parameters: $a = 8.732(2)$ Å, $b = 8.767(3)$ Å, $c = 15.736(4)$ Å, $V = 1204.6(6)$ Å³, $Z = 4$; after taking into consideration twinning, the structure was refined from 3188 reflections until $R_1 = 0.0304$. It consists of two infinite, interleaved three-dimensional boron-oxygen frameworks of the Fundamental Building Blocks formed by two B_3O_6 and one B_3O_7 groups; its shorthand notation is $9: \infty^{3}[(3:2\Delta+T)+2(3:3\Delta)]$ (Δ , triangle BO₃ and T, tetrahedron BO₄). Knowledge of the correct space group and the structure of α -CsB₉O₁₄ may help in the study of its physical properties, especially the non-linear optical ones. O 2003 Elsevier Inc. All rights reserved.

Keywords: Borate; Cesium borate; Enneaborate

1. Introduction

During the past few years, we focused our attention on the study of hydrated and anhydrous cesium borates [\[1–6\]](#page-4-0). This study mainly led to solve the structure of two new cesium borates of formula $Cs_3B_{13}O_{21}$ (B/Cs = 4.33) [\[5\]](#page-4-0) and $Cs_3B_7O_{12}$ (B/Cs = 2.33) [\[6\]](#page-4-0), compositions not reported in the different representations of the binary system $Cs_2O-B_2O_3$ [\[7–10\],](#page-4-0) and to propose a new representation of this binary diagram [\[11\].](#page-4-0)

The purpose of the present article is to report a refinement of the structure of the high-temperature form of $CsB₉O₁₄$. The existence of the cesium enneaborate was established for the first time by Krogh-Moë [\[7\]](#page-4-0), during a study of the binary system $Cs_2O-B_2O_3$. The presence of two crystalline forms was reported, and the following crystallographic data were given: α -CsB₉O₁₄, tetragonal with $a = b = 8.74$ Å, $c = 15.72$ Å, $Z = 4$, space group $P4_1$, $P4_3$, $P4_122$ or $P4_322$; β -CsB₉O₁₄, monoclinic with $a = 8.56$, $b = 13.90$, $c = 9.32 \text{ Å}$, $\beta = 92.0^{\circ}$, $Z = 4$ [\[7,12\]](#page-4-0). The existence of two forms of $CsB₉O₁₄$ was confirmed by Kocher [\[8,13\].](#page-4-0) In 1967, Krogh-Moë and Ihara [\[14\]](#page-4-0) reported the refinement of

 $0022-4596/03$ /\$ - see front matter \odot 2003 Elsevier Inc. All rights reserved. doi:10.1016/S0022-4596(03)00326-8

the structure of the tetragonal form of cesium enneaborate from visually estimated intensities coming from triple film Weissenberg exposures; the $P4₁22$ space group was proposed with the following unit-cell parameters $a = b = 8.768(5)$ Å, $c = 15.790(10)$ Å; that led to a reliability factor of 12.9%. The presence of twinning was pointed out, and the refinement of two oxygen atoms was carried out in another space group $(P222₁)$ than the other atoms $(P4₁22)$.

Due to all of the problems encountered in the resolution of this structure, we tried to prepare this compound in a single-crystal form, thus using better data to obtain better results.

2. Experimental section

2.1. Synthesis

The hydrated cesium pentaborate β -Cs[B₅O₆(OH)₄] - $2H₂O$ [\[2\]](#page-4-0) served as precursor for the synthesis of α -CsB₉O₁₄; it was obtained from an aqueous solution of dissolved Cs_2CO_3 and H_3BO_3 in stoichiometric proportions; $CO₂$ being released, the evaporation under constant stirring and heating led to the wanted compound. A stoichiometric mixture (1:4) of

Corresponding author. Fax: 33-3-22-82-75-90.

E-mail address: marcel.touboul@sc.u-picardie.fr (M. Touboul).

 β -Cs[B₅O₆(OH)₄] \cdot 2H₂O and H₃BO₃ was heated and melted at 650° C, slowly cooled down to 550° C at 0.1° C min⁻¹, and annealed at this temperature for 12h. Then, the mixture was slowly cooled down at 0.1° C min⁻¹ for 50°C, and annealed at this temperature for 12 h. This last process was repeated three times until the sample temperature reached 350° C. Afterwards, the mixture was cooled down to room temperature by turning off the furnace. Part of the recovered sample was ground for a powder X-ray diffraction investigation (Siemens D5000 diffractometer; λ CuK $\alpha_1 = 1.54056$ A). The X-ray powder pattern of the analyzed sample agrees with the ICDD card 72-0024 [\[14\]](#page-4-0).

2.2. Single-crystal structure determination

A colorless single crystal was chosen from the preparation. The intensity data were collected on a Bruker AXS SMART three-circle diffractometer using graphite-monochromatized MoK α radiation ($\lambda =$ 0.71073 A), and equipped with a CCD two-dimensional detector. In a first step, the resolution of the structure of α -CsB₉O₁₄ was attempted in the tetragonal P4₁22 space group, as proposed by Krogh-Moë and Ihara [\[14\]](#page-4-0); the merging factor R_{int} was not very good (0.0797) but the refinement smoothly progressed to $R_1 = 0.0570$ and $wR_2 = 0.1358$. However, two oxygen atoms had high

^aU_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

displacement parameters: U_{eq} about 0.07 as compared to 0.02–0.03 for the other atoms. In a second step, the resolution was conducted in the orthorhombic $P222₁$ space group. The R_{int} was better (0.0369) and the refinement converged to $R_1 = 0.0426$ and w $R_2 = 0.0912$ for 3188 reflections with $I > 2\sigma(I)$. Finally, the pseudotetragonal symmetry and the proximity of a and b parameters compelled to consider the presence of twinning: a diagonal twinning $xyz/yx - z$ was introduced; the batch scale factor (BASF) refined at 0.193(2) and R_1 lowered to 0.0304 and wR_2 to 0.0625. Crystal data and conditions of intensity collection are given in Table 1. The structure was refined by full-matrix least-squares techniques using the SHELXTL crystallographic software package [\[15\].](#page-4-0) Absorption correction was made using the SADABS program [\[16\].](#page-4-0) The atomic coordinates and the displacement parameters are reported in Tables 2 and 3; significant bond lengths and angles are listed in [Table 4.](#page-3-0)

3. Description of the structure and discussion

3.1. Borate anion

It must be noted that the description of the structure remains close to that previously made by Krogh-Moë

Formula	CsB ₉ O ₁₄
Formula weight $(g \text{ mol}^{-1})$	454.20
Crystal system	Orthorhombic
Space group	$P222_1$ (No. 17)
Unit cell dimensions (A)	$a = 8.732(2); b = 8.767(3);$
	$c = 15.736(4)$
$V(\AA^3); Z$	$1204.6(6)$; 4
Density (g/cm^3)	$D_{\text{calc}} = 2.504$
Crystal size $(mm3)$	$0.065 \times 0.140 \times 0.320$
Diffractometer	Bruker AXS SMART
Radiation	MoK α , $\lambda = 0.71073$ Å
Collection method	$\varphi - \omega$
Temperature (K)	293
θ range (deg)	$1.29 - 31.16$
Range in h, k, l	$-12 \le h \le 12$; $-12 \le k \le 12$;
	$-22 \le l \le 22$
Absorption coefficient (mm^{-1})	$\mu(MoK\alpha) = 3.153$
Reflections collected	13001
Independent reflections	3604
Independent reflections with	3188
$[I>2\sigma(I)]$	
R_{int}	0.0369
Refinement method	Full-matrix least squares on F^2
	SHELXTL-97 (15)
Number of variables	219
Goodness-of-fit (GOF) on F^2	0.990
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0304$, w $R_2 = 0.0625$
R indices (all data)	$R_1 = 0.0363$, w $R_2 = 0.0646$
Largest difference map peak and	0.982 and -1.032
hole $(e\text{\AA}^{-3})$	

Table 2 Final atomic coordinates and equivalent isotropic displacement parameters U_{eq} (\AA^2) of α -CsB₉O₁₄ with e.s.d.'s in parentheses

^aThe form of the anisotropic displacement factor is: $\exp[-2\pi^2(h^2 a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2hk a^*b^*U_{12} + 2h l a^*c^*U_{13} + 2k l b^*c^*U_{23})]$.

and Ihara [\[14\],](#page-4-0) which emphasizes the very good crystallographic work performed in 1967. The structure of α - $CsB₉O₁₄$ exhibits a framework of BO₃ triangles (Δ) and $BO₄$ tetrahedra (T) linked to each other, every oxygen atom being common to two polyhedra. The values for B–O bonds range between 1.302 and 1.394 Å for the eight BO_3 triangles, and between 1.452 and 1.471 Å for the unique BO_4 tetrahedron [\(Table 4\)](#page-3-0). These values are in good agreement with those found in other anhydrous cesium polyborates such as $Cs_3B_7O_{12}$ [\[6\]](#page-4-0), CsB_3O_5 [\[17\]](#page-4-0), $Cs_3B_{13}O_{21}$ [\[5\]](#page-4-0) and CsB_5O_8 (II) and (IV) [\[4,18\].](#page-4-0) With regard to the O–B–O angles, the mean values for BO_3 triangles and BO_4 tetrahedron are almost ideal: 120 \degree for the triangles and 109.5° for the tetrahedron ([Table 4](#page-3-0)).

 α -CsB₉O₁₄ contains nine crystallographically independent boron atoms; the borate anion present in this compound is made of two sorts of triborate goups: two B_3O_6 and one B_3O_7 [\(Fig. 1\)](#page-3-0). The B_3O_6 group consists of a six-membered planar ring in which the three boron atoms are surrounded by three oxygen atoms; all of these BO_3 triangles are linked by vertices; its shorthand notation is $3:3\Delta$. An identical group is present alone in BBO, the low-temperature form of barium metaborate β -BaB₂O₄ [\[19\].](#page-4-0) The B₃O₇ group also consists of a sixmembered ring in which two boron atoms are surrounded by three oxygen atoms, and one boron atom is surrounded by four oxygen atoms; these $BO₃$ and BO4 groups are linked by vertices; its shorthand notation is $3:2\Delta+T$. Such a group is frequently encountered in anhydrous triborates as $CsB₃O₅$ [\[17\]](#page-4-0). This B_3O_7 group insures the connexion with the two independent B_3O_6 groups by two oxygen atoms, namely O3 and O4 [\(Fig. 1\)](#page-3-0).

The structure of α -CsB₉O₁₄ consists of two infinite, interleaved three-dimensional networks of complex enneaborate groups; only one is reported in [Fig. 2;](#page-3-0) the other is deduced from this one by the two-fold axes, and is not represented for the sake of clarity. Following the crystal chemical classification of borates proposed by Christ and Clark [\[20\]](#page-4-0), Heller [\[21\]](#page-4-0), which we have slightly modified [\[22\],](#page-4-0) where fundamental building blocks (FBBs) are considered, the shorthand notation of the complex anion present in α -CsB₉O₁₄ is 9: ∞ ³[(3:2 Δ +T)+2(3:3 Δ)].

Other compounds with FBBs containing nine boron atoms were known. In the two forms of $NaB₃O₅$, these FBBs exist: $9: \infty^{3}[(5:4\Delta + T) + (4:2\Delta + 2T)]$ [\[20–22\]](#page-4-0) in the α form [\[23\]](#page-4-0) and $9:\infty^{3}[(5:4\Delta+T)+(3:2\Delta+T)+(1:T)]$ [\[20–22\]](#page-4-0) in the β form [\[24\].](#page-4-0) In the three compounds $BaLiB₉O₁₅$, $BaNaB₉O₁₅$ and $SrLiB₉O₁₅$ [\[25,26\]](#page-4-0), the following FBB was found: 9: ∞ ³3[(3:2 Δ +T)] [\[20–22\]](#page-4-0). At last, in two guanidinium and imidazolium borates [\[27\]](#page-4-0), an isolated borate group $[B_9O_{12}(OH)_6]^{3-}$ of shorthand notation 9: $(6\Delta + 3T)$ [\[20–22\]](#page-4-0) with nine crystallographically independent boron atoms, was pointed out. As shown above, in all of the other cases, the structure is formed by the association of small borate groups with one, three, four, or five boron atoms.

Table 4 Interatomic distances (\AA) and angles (deg) in α -CsB₉O₁₄

BO ₄ tetrahedron			
$B(1) - O(1)$	1.452(5)	$O(1)-B(1)-O(4)$	112.4(4)
$B(1)-O(4)$	1.461(5)	$O(1) - B(1) - O(3)$	105.3(3)
$B(1)-O(3)$	1.470(5)	$O(1) - B(1) - O(2)$	113.6(3)
$B(1)-O(2)$	1.471(5)	$O(4) - B(1) - O(3)$	110.4(3)
$\langle B(1)-O \rangle$	1.464(5)		
		$O(4) - B(1) - O(2)$	104.5(3)
		$O(3) - B(1) - O(2)$	110.8(3)
		\langle O-B(1)-O \rangle	109.5(3)
$BO3$ triangles			
$B(2) - O(1)$	1.308(6)	$O(1) - B(2) - O(5)$	123.2(5)
$B(2) - O(5)$	1.374(6)	$O(1)-B(2)-O(6)$	124.3(5)
$B(2) - O(6)$	1.374(6)	$O(5)-B(2)-O(6)$	112.4(5)
$\langle B(2)-O \rangle$	1.352(6)	\langle O-B(2)-O \rangle	120.0(5)
$B(3)-O(2)$	1.332(6)	$O(2) - B(3) - O(5)$	123.4(4)
		$O(2) - B(3) - O(7)^a$	
$B(3)-O(5)$	1.355(7)		123.1(4)
$B(3)-O(7)^a$	1.385(6)	$O(5) - B(3) - O(7)^a$	113.5(4)
$\langle B(3)-O \rangle$	1.357(6)	\langle O-B(3)-O \rangle	120.0(4)
$B(4) - O(3)$	1.304(5)	$O(3)-B(4)-O(8)$	124.2(4)
$B(4)$ –O(8)	1.376(5)	$O(3)-B(4)-O(9)$	119.0(4)
$B(4)-O(9)$	1.394(5)	$O(8)-B(4)-O(9)$	116.8(4)
$\langle B(4)-O \rangle$	1.358(5)	\langle O-B(4)-O \rangle	120.0(4)
$B(5)-O(9)$	1.342(5)	$O(9) - B(5) - O(11)^{b}$	115.7(4)
$B(5)-O(11)^{b}$		$O(9) - B(5) - O(10)$	
	1.353(6)		123.2(4)
$B(5)-O(10)$	1.354(6)	$O(11)^{b} - B(5) - O(10)$	121.1(4)
$\langle B(5)-O \rangle$	1.350(6)	\langle O-B(5)-O \rangle	120.0(4)
$B(6)-O(6)^c$	1.334(6)	$O(6)^{c}-B(6)-O(8)$	116.7(4)
$B(6)-O(8)$	1.367(5)	$O(6)^{c} - B(6) - O(10)$	123.6(4)
$B(6)-O(10)$	1.385(6)	$O(8)-B(6)-O(10)$	119.6(4)
$\langle B(6)-O\rangle$	1.362(6)	\langle O-B(6)-O \rangle	119.9(4)
$B(7)-O(4)$	1.302(6)	$O(4) - B(7) - O(12)$	124.3(4)
$B(7)$ –O(12)	1.375(6)	$O(4) - B(7) - O(13)$	119.5(4)
$B(7)$ –O(13)	1.393(5)	$O(12) - B(7) - O(13)$	116.2(4)
$\langle B(7)-O \rangle$	1.357(6)	\langle O-B(7)-O \rangle	120.0(4)
$B(8)-O(7)$	1.343(6)	$O(7)$ -B(8)-O(12)	116.5(4)
$B(8)-O(12)$	1.360(6)	$O(7)-B(8)-O(14)$	123.3(4)
$B(8)-O(14)$	1.386(6)	$O(12) - B(8) - O(14)$	120.0(4)
$\langle B(8)-O \rangle$	1.363(6)	\langle O-B(8)-O \rangle	119.9(4)
$B(9)-O(11)$	1.338(6)	$O(11) - B(9) - O(13)$	117.4(5)
$B(9)-O(13)$	1.348(6)	$O(11) - B(9) - O(14)$	119.8(5)
$B(9)-O(14)$	1.363(7)	$O(13) - B(9) - O(14)$	122.6(4)
$\langle B(9)-O \rangle$	1.350(6)	\langle O-B(9)-O \rangle	119.9(5)
Environment of cesium atoms (4 Å)			
$Cs(1) - O(12)$	3.108(3)	$Cs(2) - O(8)^g$	3.127(3)
$Cs(1) - O(12)^d$	3.108(3)	$Cs(2) - O(8)^h$	3.127(3)
$Cs(1)-O(7)$	3.196(3)	$Cs(2) - O(6)^{i}$	3.207(3)
$Cs(1) - O(7)^d$	3.196(3)	$Cs(2) - O(6)$ ^j	3.207(3)
$Cs(1)-O(1)$	3.299(3)	$Cs(2) - O(4)^g$	3.350(3)
$Cs(1) - O(1)^d$	3.299(3)	$Cs(2)-O(4)^h$	3.350(3)
$Cs(1) - O(3)$	3.334(3)	$Cs(2) - O(2)^{g}$	3.412(3)
$Cs(1) - O(3)d$		$Cs(2) - O(2)^h$	
	3.334(3)		3.412(3)
$Cs(1) - O(10)^e$	3.399(3)	$Cs(2) - O(14)$	3.438(3)
$Cs(1) - O(10)^f$	3.399(3)	$Cs(2) - O(14)^k$	3.438(3)
$Cs(1) - B(8)$	3.617(5)	$Cs(2) - B(6)^g$	3.643(5)
$Cs(1) - B(8)^d$	3.617(5)	$Cs(2) - B(6)^h$	3.643(5)

Note: symmetry codes: ${}^{a}1+x$, y, z; ${}^{b}1-x$, -y, $1/2+z$; ${}^{c}x$, y-1, z; ${}^{d}1$, x, v , $1/2+x$; ${}^{c}x$, y -1, z ; ${}^{d}y$ 1-x, y, 1/2-z; ex, 1+y, z; f1-x, 1+y, 1/2-z; ex-1, -y, -z; hx-1, $y, z;$ $x-1, 1-y, -z;$ $x-1, y-1, z;$ $x, -y, -z.$

Fig. 1. Representation of the (B_9O_{17}) borate group existing in α - $CsB₉O₁₄$. It consists of the association of three triborate groups, two B_3O_6 (three BO₃ triangles) and one B_3O_7 (two BO₃ triangles and one BO₄ tetrahedron); the linkage is made by O3 and O4 oxygen atoms. Atoms are represented by 50% probability ellipsoids.

Fig. 2. Projection on (ab) plane of one of the interleaved threedimensional frameworks existing in the structure of α -CsB₉O₁₄; the dark and light networks of $BO₃$ triangles and $BO₄$ tetrahedra are related by the helicoïdal $2₁$ axes. The other half of the structure is deduced from this one by the two-fold axes, and is not represented for the sake of clarity. Black circles represent cesium atoms.

3.2. Cesium environment

Fig. 2 shows the position of the cesium atoms; they are located in large tunnels along the three directions. There are two crystallographically independent cesium ions occupying particular positions in the space group P222₁, 2d for Cs1 and 2a for Cs2. In α -CsB₉O₁₄, the shortest Cs–B distance is 3.617 Å (Table 4). Therefore, only the oxygen atoms with shorter Cs–O bonds (i.e. $Cs-O < Cs-B$) will be considered for the oxygenated

Table 5 Bond valence analysis of α -CsB₉O₁₄^a

	O(1)	O(2)	O(3)	O(4)	O(5)	O(6)	O(7)	O(8)	O(9)	O(10)	O(11)	O(12)	O(13)	O(14)	$\Sigma s_{\text{calc.}}$	Σs_{theo}
Cs(1)	0.09		0.08				0.12			0.07		0.16			1.04	
Cs(2)		0.07		0.08		0.12		0.15						0.06	0.96	
B(1)	0.80	0.78	0.77	0.76											3.11	3
B(2)	1.19				0.99	0.99									3.17	3
B(3)		1.11			1.04		0.96								3.11	3
B(4)			1.20					0.99	0.94						3.13	3
B(5)									1.08	1.05	1.05				3.18	3
B(6)						1.11		1.01		0.96					3.08	3
B(7)				1.21								0.99	0.94		3.14	3
B(8)							1.08					1.03		0.96	3.07	3
B(9)											1.09		1.06	1.02	3.17	3
Σ _{Scalc} .	2.08	1.96	2.05	2.05	2.03	2.22	2.16	2.15	2.02	2.08	2.14	2.18	2.00	2.04		
Σs_{theo}	2	2	2	2	2	2	2	2	2	2	2	2	2	\overline{c}		

^aThe results refer to the equation $s = \exp[(r_0 - r)/B]$ with $r_0 = 1.371$ Å and 2.42 Å for B-O and Cs-O bonds, respectively, and $B = 0.37$ [30].

environment of $Cs⁺$ ions. Cs1 and Cs2 are surrounded by ten oxygen atoms. These environments and Cs–O distances are in good agreement with those found in other cesium borates [1–6,17,18,28,29].

The bond valence analysis [30] of the α -CsB₉O₁₄ structure is reported in Table 5; it leads to adequate bond valence sums with minor deviations, especially for the cesium atoms confirming their ten coordination number.

4. Conclusion

To complete the study of enneaborates, and as cesium, thallium and rubidium borates are often isotype for compounds with $B/M>3$ as, for example, MB_5O_8 [4], we also focused our attention on the preparation of the compounds MB_9O_{14} (M = Tl, Rb). Furthermore, these borates were reported in the previous studies of the binary systems $Rb_2O-B_2O_3$ (8) and $Tl_2O-B_2O_3$ [31]. Several attempts were realized but never led to the expected compounds. Note that three forms of sodium enneaborate were also reported in the $Na₂O-B₂O₃$ system [32]; they were only characterized by nonindexed powder patterns. Therefore, the only alkaline or pseudo-alkaline enneaborate with a known structure is α -CsB₉O₁₄; as its structure is non-centrosymmetric, experiments of crystal growth can be carried out to obtain large crystals allowing physical studies mainly linked to the non-linear optical properties.

References

- [1] M. Touboul, N. Penin, G. Nowogrocki, J. Solid State Chem. 143 (1999) 260–265.
- [2] N. Penin, L. Seguin, B. Gérand, M. Touboul, G. Nowogrocki, J. Alloys Compd. 334 (2002) 97–109.
- [3] M. Touboul, N. Penin, L. Seguin, Powder Diff. 14 (1999) 234–236.
- [4] N. Penin, L. Seguin, M. Touboul, G. Nowogrocki, J. Solid State Chem. 161 (2001) 205–213.
- [5] N. Penin, L. Seguin, M. Touboul, G. Nowogrocki, Solid State Sci. 4 (2002) 67–76.
- [6] G. Nowogrocki, N. Penin, M. Touboul, Solid State Sci. 5 (2003) 795–803.
- [7] J. Krogh-Moë, Arkiv Kemi 12 (1958) 247-249.
- [8] J. Kocher, Rev. Chim. Miner. 3 (1966) 209–258.
- [9] A.B. Kaplun, A.B. Meshalkin, Inorg. Mater. 35 (1999) 1159–1162.
- [10] A.B. Kaplun, A.B. Meshalkin, J. Cryst. Growth 209 (2000) 890–894.
- [11] N. Penin, M. Touboul, G. Nowogrocki, J. Cryst. Growth, in press.
- [12] J. Krogh-Moë, Arkiv Kemi 14 (1959) 451-459.
- [13] J. Kocher, Bull. Soc. Chim. Fr. (1968) 919–922.
- [14] J. Krogh-Moë, M. Ihara, Acta Crystallogr. 23 (1967) 427–430.
- [15] G.M. Sheldrick, SHELXTL: Program for Crystal Structure Solution and Refinement, Bruker AXS Inc, Madison, WI, 1997.
- [16] G.M. Sheldrick, SADABS: Program for Siemens Area Detector Absorption Corrections, University of Göttingen, Germany, 1997.
- [17] J. Krogh-Moë, Acta Crystallogr. B 30 (1974) 1178-1180.
- [18] R.S. Bubnova, V.S. Fundamensky, J.E. Anderson, S.K. Filatov, Solid State Sci. 4 (2002) 87–91.
- [19] R. Froehlich, Zeit. Kristallogr. 168 (1984) 109–112.
- [20] C.L. Christ, J.R. Clark, Phys. Chem. Miner. 2 (1977) 59–87.
- [21] G. Heller, Top. Curr. Chem. 131 (1986) 39-98.
- [22] N. Penin, Thesis, Amiens, France, 2001; M. Touboul, N. Penin, G. Nowogrocki, Solid State Sci. 2001, in press.
- [23] J. Krogh-Moë, Acta Crystallogr. B 30 (1974) 747-752.
- [24] J. Krogh-Moë, Acta Crystallogr. B 28 (1972) 1571–1576.
- [25] N. Penin, L. Seguin, M. Touboul, G. Nowogrocki, Int. J. Inorg. Mater. 3 (2001) 1015–1023.
- [26] D.Yu. Pushcharovsky, E.R. Gobetchia, M. Pasero, S. Merlino, O.V. Dimitrova, J. Alloys Compd. 339 (2002) 70–75.
- [27] D.M. Schubert, M.Z. Visi, C.B. Knobler, Inorg. Chem. 39 (2000) 2250–2251.
- [28] H. Behm, Acta Crystallogr. C 40 (1984) 1114–1116.
- [29] T.A. Borisova, E.L. Belokoneva, O.V. Dimitrova, Russ. J. Inorg. Chem. 47 (2002) 324–329.
- [30] N.E. Brese, M. O'Keeffe, Acta Crystallogr. B 47 (1991) 192–197.
- [31] M. Touboul, Rev. Chim. Miner. 8 (1971) 347–384.
- [32] T. Milman, R. Bouaziz, Ann. Chim. 3 (1968) 311–321.